Identification of an apical Cl-/HCO3- exchanger in gastric surface mucous and duodenal villus cells.

نویسندگان

  • Jie Xu
  • Sharon Barone
  • Snezana Petrovic
  • Zhaohui Wang
  • Ursula Seidler
  • Brigitte Riederer
  • Krishnamurthy Ramaswamy
  • Pradeep K Dudeja
  • Gary E Shull
  • Manoocher Soleimani
چکیده

The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence of apical Cl-/HCO3- exchange and anion conductance in duodenal HCO3- secretion.

Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounte...

متن کامل

SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl-/HCO3- exchange, and is inhibited by NH4+.

HCO3- secretion by gastric mucous cells is essential for protection against acidic injury and peptic ulcer. Herein we report the identification of an apical HCO3- transporter in gastric surface epithelial cells. Northern hybridization and RT-PCR demonstrate the expression of this transporter, also known as SLC26A9, in mouse and rat stomach and trachea (but not kidney). In situ hybridization in ...

متن کامل

PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum.

Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of mu...

متن کامل

Identification of an apical Cl(-)/HCO3(-) exchanger in the small intestine.

HCO3(-) secretion is the most important defense mechanism against acid injury in the duodenum. However, the identity of the transporter(s) mediating apical HCO3(-) secretion in the duodenum remains unknown. A family of anion exchangers, which include downregulated in adenoma (DRA or SLC26A3), pendrin (PDS or SLC26A4), and the putative anion transporter (PAT1 or SLC26A6) has recently been identi...

متن کامل

Gastroduodenal HCO3(-) transport: characteristics and proposed role in acidity regulation and mucosal protection.

Gastric HCO3(-) transport (basal) studied in isolated amphibian mucosa and mammalian stomach in vivo amounts to 2-10% of maximal H+ secretion. Duodenal mucosa, devoid of Brunner's glands, transports HCO3(-) at a greater rate (per unit surface area) than either stomach or jejunum in vitro and in vivo. Gastric (but not duodenal) HCO3(-) transport is stimulated by dibutyryl cGMP, carbachol, and ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 285 6  شماره 

صفحات  -

تاریخ انتشار 2003